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Preface

This report is a somewhat modified and expanded version of a report issued in June

1985 by the School of Aeronautics and Astronautics at Purdue University entitled 'An

Unsteady Lifting Surface Theory for Single Rotation Propellers' [13]. The report

provides background on a code, UPROP3S, that has been developed for the unsteady

aerodynamic and aeroelastic analysis of advanced turboprops. Further information on the

use of that code is given in a user's manual [14]. The treatment of the blade boundary

condition in Sec 3. l has been altered from its original form, which was slightly in error.

In addition, new sections on mistuning (Sec 1.4) and aeroelastic analysis (Appendix VI)

have been added. The aerodynamic code based on this report has been incorporated into

the aeroelastic analysis program ASTROP3 at NASA Lewis Research Center. However,

the aeroelastic analysis given in App. VI is the one used in the code UPROP3S, and was

not used in ASTROP3. Since the scheme has not been described elsewhere, a brief

outline has been included herein.

PRECEDING PAGE BLANK NOT FILMED

.o.

111

_L,__,__JNT_,N IIONALLY 81..AN_





Contents

Page

Nomenclature ................................................................................................................... vii

1. Theory

1.1 Introduction ..................................................................................................... 1

1.2 Coordinates and Geometry ............................................................................. 3

1.3 Surface Boundary Condition .......................................................................... 5

1.4 Periodicity ....................................................................................................... 7

1.5 Lifting Surface Integral Equation ................................................................... 9

1.6 Discretization of the Integral Equation .......................................................... 11

1.6.1 Numerical Evaluation of Influence Coefficients ....................................... 12

1.6.2 The Quasi-Planar Kernel, Ko ....................................................................... 14

2. Results

2.1 Introduction ..................................................................................................... 16

2.2 Convergence and Control Point Position ........................................................ 17

2.3 Planar Wing .................................................................................................... 19

2.4 Propeller Performance .................................................................................... 20

2.5 Torsional Response of a 10 Bladed Fan ........................................................ 22

PRECEDING PAGE BLANK NOT FILMED

v

e_k__._.J tNltt4ua_



2.6 Generalized Forces for the SR3 ....................................................................... 23

References .......................................................................................................................... 24

Appendices

I. Velocity Induced by a Moving Point Force ................................................... 26

II. Kernel Function for Helical Lifting Surfaces ............................................... 29

III. Numerical Evaluation of the Kernel Function .............................................. 33

IV. Efficiency Calculation .................................................................................. 36

V. 2-D Airfoil Test Case .................................................................................... 40

VI. Aeroelastic Analysis ..................................................................................... 42

vi



Nomenclature

Cij Aerodynamic influence coefficient, Eq.(28)

CLo design lift coefficent of 16 series airfoils, Eq.(48)

CT Thrust coefficient, Eq.(45)

Cp Power coefficient, Eq.(46)

D± panel edge integrals, Eq.(30)

Do part of D± from K0

D 1 part of D± from K1, Eq.(33)

H Heaviside step function

J advance ratio, 7t/S

K propeller kernel function, Eq.(II.15)

K0 quasi planar kernel function, Eq.(37)

KI residual kernel function, K - K0

L normal to helical surface, Eq.(5)

m interblade phase index, Eq.(20)

Mx axial Mach number

Mo Helical Mach number of a blade point
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---9
n unit normal to blade surface

Nn number of blades or periodic groups of blades

P scaled pressure difference across surface, Eq.(24)

Qij generalized aerodynamic force, Eq.(50)

rh blade hub radius

rt blade tip radius

R blade surface rotation, Eq.(19)

S tip to axial speed ratio, _rt/U

t time

u perturbation velocity of fluid

U axial flow velocity

vn normal velocity of blade surface, Eq.(l 1)

V side slip velocity

W scaled upwash on blade surface, Eq.(24)

x axial distance along axis of rotation, undisturbed air frame

_ axial coordinate in rotor frame, Eq.(2), Fig.l

y cartesian nonrotating frame coordinate

_" cartesian rotating frame coordinate, Eq.(2), Fig.1

z cartesian nonrotating frame coordinate
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cartesian rotating frame coordinate (along pitch change axis)

Greek symbols

blade helical curvature, Eq.(6)

1_ angle between blade chord and plane of rotation

13314 blade setting angle at 3/4 tip radius

A0B angle between blades

Ap front - back pressure difference

blade surface displacement

normal component ofg, Eq.(16)

rl efficiency, Eq.(47)

0 circumferential angle (nonrotating frame)

circumferential angle (rotating frame)

e control point position in fraction of panel chord

fraction of blade chord from leading edge

P0 undisturbed airdensity

a(r) blade surface helical coordinate, Eq.(4)

co vibration, or excitation frequency

t2 rotational velocity (positive in - 0 direction)
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(I.1) Introduction

Section 1

Theory

When a propeller undergoes blade vibration or operates in a nonuniform stream,

unsteady aerodynamic forces are exerted on the blades. These fluctuating forces may

influence the fatigue life, the aeroelastic stability and the noise output of the propeller. It

is essential, therefore, to be able to predict aerodynamic responses for propellers in time

dependent flows. This report describes a numerical method for making such predictions

for single rotation propellers.

The analytical model employed herein uses linear compressible small disturbance

theory. In practice this means that the blades must be thin and at small local angles of

attack (below stall). Further, any incident flow distortions must involve velocities which

are small compared to the helical blade speed. Finally, linear theory does not account for

embedded shocks which can occur on transonic tips or in a blade passage (at high

solidity, where blockage may be significant).

In addition to linearity, we assume that the load at any point on a blade fluctuates

harmonically in time with some prescribed frequency co. Hence the entire disturbance

field will fluctuate harmonically at the same frequency (in a frame rotating with the

propeller). More complex periodic disturbances can, of course, be examined by breaking

the disturbance into its Fourier components and finding the response to each individually.

A blade may be thought of as a mean camber surface overlaid with a thickness

distribution. In the linear approximation the thickness distribution does not effect the

loads and will, therefore, be ignored. The mean camber surface, which determines the

loads, may be either rigid or may vibrate harmonically about some average position. In

either case the object of the calculation is to find that load distribution (pressure jump

across the surface) for which there is no flow through the surface.

The task of finding such a load distribution is simplified by transferring the

boundary conditions from the actual camber surface to a neighboring helical surface (see

Sec. 1.3). This is done by choosing some curve, called the "generator," on the surface. If

the blade vibrates, the generator is chosen to lie on the average camber surface. As the

blade advances and rotates the generator sweeps out a fixed helical surface. If the actual

blade lay exactly on the helical surface - and there were no incident flow nonuniformities

- then the blade would produce no disturbance as it slices through the air. Thus it is the

deviation of the camber surface from the helical surface swept out by the generator which

produces a load.

In practice, the load distribution is placed on the helical surface, rather than on the

camber surface. The advantage of this transfer is that the trajectories of all points at a

fixed radius on the helical surface are the same. Since, as will be seen later, the
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calculationof thevelocity inducedby oneloadpoint on thebladerequiresan integration
along the trajectoryof thatpoint, the presentschemeallowsone integrationto serveall

bladepointsat a fixed radius. If the loaddistributionwereplacedon thecambersurface

thena separatetrajectoryintegralwouldneedto bedonefor eachbladepoint.

In this model, then, a propeller blade is thoughtof as a distributed load sliding
alongthehelical surfacewhich inducesa givendistributionof normalvelocitieson itself

(Sec.1.3).

Linearaerodynamictheoryprovidesanexplicit expressionfor thenormalvelocity

at anypoint in termsof a surfaceintegralof the load distribution. Sincethe velocity is
given,thisrelationamountsto a linearintegralequationfor the load(Sec.1.5). To solve

this integral equationthe blade is brokeninto a finite numberof elements,on eachof

which theloadis consideredto beconstant.To eachelementa control point is assigned
at which the normal velocity is specified. The loads on all the elementsare then

determinedsimultaneouslybyrequiringthattheir resultantinducednormalvelocity have
the specifiedvalueateachcontrolpoint.

The principle difficulty in implementing this schemeis that the velocity field
inducedby a constantloadbladeelementcannotbecomputedexactly. In fact, noteven

thevelocity inducedby a point loadcanbecomputedexactly (meaning,of course,that

evaluating either quantity to machineaccuracywould require excessivecomputation

times). Hencethe influencecoefficients(thenormalvelocity at a control point induced

by a unit loadon anelement),mustbeapproximatednumericallywith enoughaccuracy

to maketheresultsmeaningfulyet with enoughsimplicity to makethe schemepractical.
The way in which the influence coefficientsare calculatedis the key to making the
method work. The schemeused for the presentcalculationsis describedin detail in

Chapter'l.6.

Severalthreedimensionallinear lifting surfacetheoriesfor propellers,similar in

various respectsto the present method, have appearedin the past. The work of

Hammondet al. 11] is closestto the presentscheme,differing only in thediscretization

procedure.Hanson [21 usesthe sametheoreticalframework but expressesthe kernel

function asan infinite seriesof Besselfunctions. He givestheequations,but no results,

for a vibratingblade. Farassat13]andLong [4], employ linearcompressibletheory,as
doesthe presentwork, but do not use the meansurfaceapproximation. Like Hanson,

theyshowno resultsfor avibratingblade. Sullivanandco-workers[5-61havedeveloped

a vortex lattice method for steady performancecalculations (recently extended to

counter-rotation,usinga quasi-steadyapproximation[7]. Finally wenote that a number

of 3-D finite differencealgorithmshave beendevelopedfor the steadyproblem [8],
thoughnonehasbeenextendedto unsteadyflows.



(1.2)Coordinates and Geometry

Coordinate Systems

(see Fig. (1))

(a) Inertial Frame

(x,y,z) is a right handed cartesian system fixed in the undisturbed fluid. In this

frame the propeller center of rotation advances with speed U along the (-x) axis and the

blades rotate, clockwise, at speed _ when viewed from the -x axis (so the rotational

velocity vector points along the +x axis).

(x, r, 0) are cylindrical coordinates, with 0 measured from the z-axis; so that:

y=r sin 0, z=rcos0 (1)

(b) Rotor Frame

(-£, _, z-) is a right handed cartesian system fixed in the rotor. (The _ axis can be

taken to coincide with the pitch change axis of the reference blade).

(_, r, 0) are cylindrical coordinates fixed in the rotor.

From the sign convention adopted we have,

_=x+Ut, 0=0+fit

_ = r sin 0, _ = r cos 0 (2)

Helical Surface

(see Fig. (2))

Any fixed point on a blade follows a helical trajectory x - U / _ 0 = _"- U / fl 0.

Let _'g(r), 0g(r) define some space curve lying on the blade chord surface ( e.g.

The trailing edge or mid-chord line). This curve generates a helical surface,

x = U / fl (0 + _) (3)

where

_(r) =-_ / U Rg - 0g. (4)

Note that this helical surface is time-independent, and fixed by the advance ratio

and the choice of generator curve (which determines c(r)).

The normal to the helical surface is,



L = V(x - U / _ (0 + t_))

= ix - U /(ftr) (io + Ctir) (5)

where (ix, i0, it) are unit vectors in the (x, 0, r) directions respectively, and

d(l
ot = r m. (6)

dr

Note that the normal L is a function of position only.

We shall parameterize the helical surface by (r, 0). An area element on the surface

is, then,

dA = L rdr dO (7)

and an element of arc length along the surface at fixed radius is,

ds = dO [r 2 + (U/fl) 2 ] .5 (8)

In the aerodynamic model, the load distribution is placed on the helical surface,

within the region

rh <_r < r t (9)

OLE(r) < 0 < OrE (r).

These edge coordinates of the lifting surface are obtained by projecting the blade

chordline onto the helical surface so that the (helical) arc lengths are equal:

- - F (Ax)2+(rA0) 2 !/2

0TE -- 0LE = [ (U/_'-'_)2+r2
(lO)



(1.3) Surface Boundary Condition

The normal velocity of the fluid at the blade surface must equal the normal

velocity of the blade surface at every point. Let _} be the fluid velocity in the inertial

frame ( i.e. relative to the undisturbed . -ofired), n the unit normal to the blade surface, and

Vn the normal velocity of the blade surface (again in the inertial frame). Then at every

point on the blade we must have,

..._ ....}

n'u = vn. (11)

In the present (linearized) model, wherein the load is transferred to the helical

surface, the boundary condition is similarly transferred. Thus at every point on the

helical surface we impose the constraint,

_'_'= ILIv,, (12)

which says that the normal velocity induced on the helical surface by the load

distribution must equal Vn (which is known once the blades shape and motion are

specified).

In the present study the normal velocity is assumed to be either steady or simple

harmonic at any fixed blade point. Expressions for three cases will be given here: steady

operation, propeller in yaw, and blade vibration.

Steady Operation

For steady state operation we have,

v n = -Un x - f2(_ ny - ynz), (13)

(where nx, ny, nz are the components of_in the blade coordinate system).

Blade in Yaw

If the propeller blades are rigid but operate in a crosswind V (in the y direction),

the corresponding amplitude of v n (on the reference blade) is:

v n = -V (ny + i n_). (14)

The fluctuating frequency is ¢0=f/ and the interblade phase index is m = -1 (see

"periodicity".) This case is equivalent to a yaw angle of tan-: V / U = V / U. Of course,

the yaw angle must be small in order for linear theory to be applicable, in which case the

resultant blade loads will be proportional to the yaw angle.

Blade Vibration

If the blades vibrate with frequency co, the amplitude of the resulting normal
.....}

velocity fluctuation may be computed from the displacement vector _ and rotation vector



R assigned to each blade point x:

v n = i0_5 + VR (15)

where

8 =_.g (16)

is the normal displacement, and VR = VR I -4- VRz , with

VR, = U ( nyR z - nz Ry ) (17)

+ _[_ nz + y ny)Rx - nx(y Ry + _ Rz)l

being the contribution from rotational deformation, and

VR2 = f_ ( _ nz - 8z ny ) (18)

being the contribution from the increase in speed due to a radial displacement (which was

missing in the original report and code.)

These expressions can be used directly if the smactural displacement and rotation

vectors are available (e.g. from a finite element analysis). If the rotation vectors are not

available (or are unreliable), they can be computed from their fundamental definition in

terms of derivatives of_,

R x =--ny n-_"_z + nz n_-_y (19)

Ry = nx _'-_ z

Rz =-nx n_"_y

The subscripts on _ denote differentiation along the indicated directions, assuming the

blade is parameterized by y and z.(This method of computing rotation vectors was not

used in the original work and is superior to the scheme described earlier.)

In practice, the blade is usually defined by a discrete set of nodes covering the

-* _, and ,perhaps, R defined at each node. To determine thecamber surface, with x,

normal velocity at any prescribed point on the surface, the -_ data is fit with a polynomial

( quadratic in y and bilinear in z and y) ,least squares interpolated to the six nearest

neighbor nodes. The five coefficients of this surface fit can be used to define the surface

normals as well as the interpolations of the displacement vector and its derivatives.



(1.4) Periodicity

We assume that there are Na identical blades (j=l ..... NB) spaced equally in angle

increments A0a = 2_/Na. Then the load on any one blade will be the same as the load on

every other blade except for possible phase shifts. To allow for such phase shifts we

assume that the normal velocity on the jth blade at a given point is related to the normal

velocity on the reference blade (j = l) at the corresponding point by,

(Vn)j = (v.)i e imc'i--l)A_ (20)

where m may assume any integer value, m = 0, 1..... N8-1.

Let Ap be the pressure difference (upwind-downwind) across a blade. Then, by

(17), the loads are also related by

(Ap)j = (Ap) l eim(j-|)A§s , (21 )

SO that only the load on the reference blade need be found.

Note that with NB blades there will be Nn helical surfaces with helix numbers

(Eq.(4)) given by,

aj = _31 - (j-l) AOB (22)

Finally we shall assume that the normal velocity and load at any fixed point on a

blade vary harmonically in time, with frequency co, like e i_t. For most interference

problems co will be a harmonic of the rotor frequence ft. For vibration problems, co will

be close to a blade natural frequency.

Mistuning

The foregoing discussion is easily extendible to cases in which not all the blades

are identical, but the 'mistuning' is distributed periodically( eg. alternate mistuning.)

This is done simply by redefining 'blade' to mean 'a group of blades'. The groups are

assumed to be indistinguishable, but each group may consists of an arbitrary collection of

disjoint surfaces. (The only special coding change that was needed to allow for different

blades within a group was to ensure that the tip of one blade was not connected by panels

to the root of the next blade.) If all the blades are different (i.e. there is no periodicity)

then there is ,by definition, only one group. A 'tuned' rotor consists of NB groups with

one blade per group. Alternate mistuning would have NB groups with two blades per

group.

In addition, mistuning studies require a generalization of 'blade mode'. The

simplest definition of a 'group mode' is to suppose that one group mode corresponds to

one blade in the group vibrating in one of its natural modes while all other blades in the



groupremainfixed. Thusthe total numberof groupmodes will be the number of modes

retained per blade summed over the group. The numbering sequence is arbitrary.



(1.5)Lifting Surface Integral Equation

From the assumptions of aerodynamic linearity, simple harmonic time dependence,

and blade to blade periodicity, the entire disturbance field surrounding the propeller can

be determined directly from the distribution of load amplitude over the reference blade.

In particular, then, the load distribution determines the distribution of normal velocity

over the reference blade.

This relationship between load and normal velocity can be expressed as an integral

equation,

f f P( o, K(0-0o,T,To)Tod odTo (23)

where

---_ .._)

. . L.u. i_
W = 4nt---0---)e

p=s2 Ap e i_°. (24)

poU 2

Here W isproportionalto the normal velocity,P to the pressurejump acrossthe

blade,and K isa (known) kernelfunction.In most applicationsthe normal velocityis

specifiedand the integralequation must then be solved for the load distribution.The

method used todo thiswillbe describedin subsequent sections.

Expressions for the kernelfunctionare derived in Appendices I and If. Here we

willonly discussitsgeneralproperties.

Parametrically,K depends on the speed ratio,S; the frequency ratio,o_= m/i};the

axialMach number, Mx; the interbladephase index,m; the number of blades,NB; and

the helixnumbers, o(r). Ifthesequantitiesare specifiedthen K isuniquely determined.

The kernel does not depend on the blade planform shape or the normal velocity

distribution.

Physically,K can be interpretedas follows. Suppose thatthe load isconcentrated

on a particularradius,with zeroamplitude upstream and constantamplitude downstream:

p('f,0) = H(0)_(F-7o)/fo . (25)

If there are N B blades then there are N B such loaded lines, all extending from the same

axial position to downstream infinity, with equal strengths but phase shifted in accord

with the index, m. The normal velocity induced by this set of loaded lines on the

reference blade is, from Eq's. (23) and (25),

9



W(T,0) = K(0, T,_o). (26)

The kernel dependsonly on the angle difference 0- 0o, becauseof rotational

symmetry. It dependson the radii r, ro separately,becausethe relative velocity is a

function of radius. Theevaluationof K asa function of 0 - 0o for anyspecifiedpair of
radii r, to, requiresnumericalintegrationalong the NR helical lines at radius ro (the

integration is a consequenceof Newton's law - velocity is the integral of the force

producingit). As aresult theevaluationof K tendsto be thedominantpart of the load

calculationfor moderatepaneldensity.When the numberof panelsis very large the
O(n3)costof Gaussianeliminationwill dominate.

From thephysicalinterpretationof K asthevelocity inducedby a setof line loads

it is apparentthat K will containsingularities. In particular,K will alwaysbe infinite on

r = ro,0 > 0o, i.e. on theloadedline. If thehelical Machnumberat radiusro is lessthan

one thenK will be boundedeverywhereelse. However,if the helical Machnumber is

greaterthanone, thena spiral Machcone will extendback from the tip of eachof the
loadedlines. Thus K will be infinite whereverone of theseMachconesintersectsthe

referencehelical surface. The singularitiesof K must be handledvery carefully in
constructinganumericalsolutionof the lifting surfaceintegralequation.

10



(1.6)Discretization of the Integral Equation

In brief, the lifting surface integral equation, Eq(23), is solved approximately by

splitting the blade into a finite number of elements within each of which P is assumed

constant. The normal velocity W is then specified at one point per element, thereby

reducing the integral equation to a set of simultaneous algebraic equations for the loads

on each element.

More specifically, the blade is split into NRP radial strips of arbitrary width. Each

strip is then divided into NXP chordwise pieces by a sequence of constant partial chord

lines (the chordwise spacing is arbitrary). The blade is thereby decomposed into

NP = NRP.NXP quadrilateral panels.

A control point is placed on each panel at its mean radius, a distance cA0

downstream from the midspan panel leading edge, ( where A0 is the panel chord at

midspan, and distance is measured in 0.) The arrangement is illustrated in Fig. (3). The

selection of e is discussed in Sec. (2.2).

The algebraic system resulting from this discretization is

NP

Wi = _ CijPj (27)
j=l

where

W i -" W at ith control point, (0i, gi)

Pj = P on jth panel,

Cij = -II aK(gi- 0o, ri, ro ) dgogoCffo
ago

(28)

Note that the chordwise integration in the influence coefficient Cij can be performed

directly (this is why P, rather than Ap, was treated as being constant over the panel).

Hence

Cij --- D_ - D+ (29)

where D+ are the radial integrals along the panel leading (-) and trailing (+) edges

D+ = I K(gi - Oo+, gi, _'o)T'odgo (30)

(g_ffo) are the panel leading and trailing edge coordinates). Note that for a fixed control

point, D+ for one panel is the same as D_ for the next panel in the row. Thus D must be

evaluated NXP+I times per radial strip.

11



(1.6.1) Numerical Evaluation of Influence Coefficients

Computing an influence coefficient requires a radial integration of the kernel

function for D. However, the kernel function evaluation itself must be done numerically

so that only a few values of K will be available near any given panel. This is not a large

problem, if the panels are small, unless the panel encloses, or lies near a singularity of the

kernel. This does happen, however, when the control point radius lies within, or near, the

panel row.

To circumvent at least some of the difficulties associated with the kernel function

singularity, the kernel is split into two parts

K=Ko + K1 (31)

with a corresponding decomposition of D:

D = Do + D1 • (32)

The Ko term is an analytical approximation which is valid when r-ro is small, and

therefore contains the dominant part of the singular structure of K (to be precise, K and

Ko behave like (r-ro) -2 near r= ro when 0 > 0o). The residual kernel, K1, is simply

defined as K-Ko. For the cases run, Kt has been found to be also singular, but only as

(r-ro) -1 . This singularity will be accounted for in the evaluation of D1.

The specific form of Ko used here will be given in the next section. The significant

point is that it is simple enough that Do can be evaluated exactly and efficiently.

The part of the influence coefficient arising from the residual kernel K1, i.e., Dr, is

evaluated by simple quadrature rules. The specific rule used depends on whether the

control point lies within the panel row or not. (Cases (a) and (b) below)

Let the upper and lower radii of the panel be R1 and R2 respectively and suppose

the particular panel edge in question runs from 0ol to 0o2 (see Fig. 3). Then the value of

Dt required is:

R2

D1 = _ K1 (0 - 0o, T, To)To d-fo. (33)
R1

(a) Tg (RI+R2)/2 = R m

In this case the control point is outside the panel row. The kernel K1 is evaluated

numerically along the midspan and D 1 is evaluated from

D1 - Rm(R2 - R1 )K1 (0 - 0om, _, Rm)'Q (34)

12



where R m and 0ore are the mid-points as shown in Fig. 3. If 0 < 0ore, i.e. if the control

point is upstream from the panel edge, then the factor Q is set to 1. If 0 > 0om, though,

the residual kernel K1 has a pole atTo =Twhich may be close by. In this case we take

Rm_T _2 diro
Q = R2-R----_ R1 ro-r

R2-T
In

RI--T

(35)

If the control point radius is more than one or two panel spans removed, this correction

factor is nearly one. It differs from one significantly only in the neighborhood; e.g. if

T= Rm + R2 - R1 then Q = 1.1.

(b) T= R m

In this case the control point is in the panel row and the kernel is singular along the

midspan. The kernel is then evaluated numerically along the edges R1 and R2 and D1 is

evaluated from the quadrature rule:

1

D I = (R2-RI) -_- Rm[K1(0-0o2, T, R2)

into.

+ Kl (0--0ol, T, Rt )] (36)

Note that this rule is exact if K1 = a/('r'o-r--) (i.e. it gives D1 = 0) and if K1 is linear

In summary, if the control point lies outside the panel row we evaluate the residual

kernel along the midspan of the row. If the control point lies within the row then we

evaluate K1 along the outer edges of the row. For each control point and panel row we

will need numerical values for K1 at a discrete set of angles 0-0o, numbering roughly

(NXP) 2. In practice a single table of K1 values covering the needed range of 0-0o is

generated for each panel and control point row and values for specific panels and control

points are found by interpolation in the table.

13



(1.6.2)The Quasi-Planar Kernel, Ko

As observed earlier the kernel K is the normal velocity on the reference helical

surface induced by a system of loaded lines emanating from each blade. If the observer

is very close to the loaded line on the reference surface, the influence of the other blades

will be negligible. Moreover the effect of curvature will be small if the distance from the

line to the observer is small compared to the radius of curvature of the helix. Hence the

local effect should be essentially the same as that of a straight loaded line on the tangent

plane. Thus we shall use a modified form of the planar wing kernel function.

Let Mo = [U2+(f_ro)2]'_/ao be the helical Mach number at radius r. The form of

Ko depends on whether Mo is greater or less than one:

Ko(A0,r,7o)- C {X+[X2+By2]} sup half ifMo < 1
_,y2

2CH(X)

ToY2
[X2+By2] _A if Mo > 1 (37)

where

B= 1 -M 2

Mx Mx 2 1

C - (1 + (--_-_--o) or2) • -- (38)Mo S2 r

and H is the unit step function, and tx is the helical surface curvature at radius T defined

by Eq. (6).

If we interpret X as being distance downstream and Y perpendicular to a uniform

flow at Mach number Mo, then these are the planar wing kernel functions for steady

subsonic and supersonic conditions respectively (the supersonic kernel is taken to be zero

outside the Mach cone).

In terms of propeller coordinates we take

X = A0 + (Mx/Mo) 2 0t(ATff)

y2 = (Mt/Mo)2 11 + (Mx[Mo)20_2l(Ar-) 2 (39)

AT=_- ro

It should be noted that the precise form of Ko is rather arbitrary. The only

requirement is that Ko should capture the dominant singularity of K and be integrable

analytically. The present choice has these properties, though there may well be better

choices available.
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The correspondingvaluesof Do canreadily beevaluatedby useof the following

identities. Let A0 be linearly interpolatedalong the paneledgeso that X = Xo + X'Y

where Xo and X' are interpolationcoefficientsdeterminedfrom the panel edge end

points. Let R(Y)= [X2+(I-M2)y21 vl. Note that Y is linear in Fo so that integrating in

TO is equivalent to integrating in Y. Then, ifd 2 _=(X')2+B:

X+R d X+R X' In X+R
y2 - dY {- Y _ +d In (X'X+dR+BY)} (40)

gives Do in the subsonic case;

R _ d R -X' X+R +dln(X'X+BY+dR)} (41)
y2 dY {- V In T

gives Do in the supersonic case (subsonic edge, d 2 > 0); and

R d R X'ln X+R X'X+BY
y2 - dY {- T - T + Idl sin -1 ( [_BX2]_ )} (42)

gives Do in the supersonic case (supersonic edge, d 2 < 0).
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Section2

RESULTS
(2.1)Introduction

The theory outlined in Section 1 of this report has been implemented in a program

UPROP3S (unsteady-propeller-3D-single rotation). Representative results based on that

program will be described here, with a view toward demonstrating and verifying the

program's capabilities.

In outline the cases which will be discussed are:

1. Convergence Study

The method is shown to converge when the number of panels is

increased. A control point location for best convergence rate is

identified.

2. Planar Wing

The method is shown to reproduce known results for isolated planar

wings in steady and unsteady flow.

3. Performance Characteristics

The theory predicts steady state propeller performance

characteristics which are in agreement with existing methods.

4. Ten Bladed Fan Study

The analysis of a l0 bladed fan shows the same qualitative

influence of interblade phase angle on the vibratory response

loads as 2-D cascade theory.

5. SR3 propeller

Generalized forces for structural vibration of an advanced

turboprop design are presented.
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(2.2)Convergence and Control Point Position

The lifting surface integral equation, Eq(23), admits an infinite number of

solutions. However, only one is physically acceptable - the one which satisfies the Kutta

condition, Ap = 0 at the trailing edge. Since this condition is not clearly imposed in the

numerical scheme, the ability of the method to capture the Kutta condition needs to be

demonsla'ated. To be precise, we must ask the question: does the discrete solution

converge to the desired solution of the continuous problem as the number of panels is

increased?

Numerical experimentation has indicated that the answer to this question is yes -

1

provided that e >_ (i.e. as long as the control point is downstream from the panel

1

midpoint). Thus the numerical Kutta condition is simply e > _-. (This problem is further

discussed in Appendix V.)

We illustrate the convergence properties of the method with an oscillating

propeller problem:

Purdue model blade (Table 1)

i

NB = 1, S= 1.7, Mx =.1, o= 1

vn = f]rt(1 + it.o 0) (43)

A sequence of calculations were performed in which the number of radial panel rows was

fixed at 9 and the number of chordwise panels (NXP) and the control point position (e)

were varied.

Fig. (4) shows the fluctuating sectional thrust coefficient (real and imaginary parts)

at 80% tip radius. For each value of e, results were calculated at NXP = 4, 8 and 12. The

data was then fit with a quadratic in 1/NXP, as shown. The zero intercept is a prediction

of the limit value.

The important conclusions to be drawn from this plot are:

• The limit values are insensitive to control point position.

• The choice c = .85 gives nearly the same result for all NXP.

• The algorithm is first order (error proportional to I/NXP.)

Thus the numerical scheme is convergent and the optimal convergence rate is obtained

with e = .85. Similar results for the 2D airfoil probiem are given in Appendix V.

The in-phase and out-of-phase parts of the chordwise pressure distribution at T = .8

are shown in Fig. (5) for the e = .85 case. It is clear that the Kutta condition is captured.
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Moreoverthe pressuredistribution (aswell asthethrust)is insensitiveto NXP at this e,

though of course the larger NXP the better defined the distribution.

All other results reported here will be for e = .85.
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(2.3)Planar Wing

The propeller analysis can be used to approximate an isolated planar wing either

by taking the speed ratio S (_ rt/U) to be very small or by taking the blade span to be

small compared to the radius of rotation. The results of such a simulation are shown in

Figs. (6, 7) with comparisons to Albano and Rodden's doublet lattice method. [9] The

case chosen is an aspect ratio 2 rectangular wing at low Mach number, pitching

harmonically about midchord. (Simulated _ that the variation in flow speed along the

span is less than 1%.)

Figure (6) shows the real and imaginary parts of the chordwise load distribution at

midspan for a reduced frequency toc/U = 1. Fig. (7) shows the total lift coefficient per

unit amplitude as a function of reduced frequency.

It is apparent from these comparisons that the present analysis does produce the

same results as classical linear unsteady wing theory in this limit.
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(2.4)Propeller Performance

In this section we will discuss the steady state performance characteristics of three

propellers, comparing the predictions of the present lifting surface theory, and Sullivan's

vortex lattice method [5-8] which is based on linear incompressible (steady)

aerodynamics and so should agree with the present theory at low Mach numbers. Any

difference between the two theoretical predictions (at low Mach numbers) then, is a

consequence of the different discretization methods. In this regard it should be noted that

the two theories differ significantly in the way efficiency is calculated: the present

scheme uses the leading edge thrust concept while Sullivan [5] uses the Kutta-Joukowski

law.

Results will be presented in terms of the conventional performance parameters:

AdvanceRatio : J = _:/S (44)

thrust coefficient • CT = thrust. 7tE/(4f_Ert4) (45)

power coefficient" Cp = power- 7t3/(4_ 3rt5) (46)

efficiency : rl = JCT/Cp (47)

The three configurations studied (all straight bladed propellers), are:

(a) Purdue model (Table l), NB = 1

(b) NACA 109622 (Table 2), Nr_ = 3

(c) SR2 (Table 3), NB = 8.

The chord, twist and camber distributions are given in the indicated Tables. (AI3 is

the change in blade setting angle from the 3/4 radius station.)

The normal velocity used in the lifting surface calculation is,

v. = Ur [13- tan -] ( ) + 4--_ In ( )1 • (48)

where { is the distance along the chord line measured from the leading edge, in units of

chord. The Ct_ term in this expression is based on the camber line of the 16-series

airfoils used on the outboard sections of the SR2 blade (the present calculations use the

same airfoil at all radii). The value assigned to Ct_ is the 'design' lift coefficient of the

airfoil at zero angle of attack ( the 16 series airfoils being designed to give a flat load

.distribution according to linear 2D airfoil theory.) The first two blades are uncambered

(Ct_ = 0) and so derive their thrust from twist only. The SR2 blade is cambered and so

derives part of its thrust from the camber.
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Figure (8) showsthe powerandefficiency asa function of advance ratio for the

Purdue blade operating at low Mach numbers and []3/4 = 45.7°. The two methods predict

essentially identical efficiencies. The present method gives a power coefficient slightly

(around 10%) lower than the vortex lattice method. (The thrust, which is not shown,

must also be slightly lower to get the same efficiency).

Figure (9) shows a similar comparison between the present method and vortex

lattice theory, for the three bladed NACA 109622 (again at low Mach number). The two

results are clearly very close to each other, with the lifting surface theory now slightly

lower in terms of efficiency as well as power and thrust.

The general conclusion to be drawn for Figs. (8) and (9) is that for straight bladed

propellers operating at low Mach numbers the present theory predicts essentially the

same performance characteristics as the vortex lattice method.

In Fig. (10) we compare the power coefficient predicted by the present scheme to

measured values for the SR2 propeller. Three configurations are shown:

(Mx, _3/4) = (.3, 40°), (.3, 52 °) and (.7, 58°). In each case the relative tip Mach number

at the lowest advance ratio is near 1. Thus compressibility effects are to be expected.

For each blade setting two theoretical predictions are shown - one at low Mach number

and one at the experimental value. As would be expected, the incompressible result is

low. The predictions using the appropriate Mach number are in very good agreement

with experiments.

This indicates that the linear compressibility effects included in the present theory

are a significant factor.
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(2.5)Torsional Response of a I0 Bladed Fan

In this example we consider a fan with 10 blades, each executing a torsional

oscillation. The objective of the study is to validate the present theory with regard to the

dependence of vibratory response on interblade phase angle.

The blade planform geometry is given in Table 1. The blades are unswept,

constant chord, and helically twisted. The operating conditions are defined by Mx=0. l, S

= 1.597, co = 1.0.

The normal velocity distribution on the reference blade is,

m_

Vn = Ure I . ot(l+ito 0) (49)

where Urel is the helical velocity and ot is the local angle of attack amplitude, which is

assumed to vary linearly from hub to tip o_= r - rh •

The aerodynamic response, shown in Figs. (11,12), is measured by the sectional

lift coefficient 1/_pb3c02, where b is the blade semi-chord (.23 rt,) and 1 is the lift per unit

span. Results from Smith's two dimensional cascade theory [10] are included for

comparison.

The two figures are for two radii: one inboard, _ = .6 and one near the tip, _ = .9.

In both cases the 2 and 3 dimensional theories show the same qualitative dependence of

load on interblade phase angle. Not surprisingly, the agreement is quantitatively better

away from the tip. The 2-D analysis drastically over predicts the inphase loads at T = .9

for most interblade phase angles. This is to be expected for an unducted fan and is one of

the reasons why a 3-D analysis is preferable.
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(2.6)Generalized Forces for the SR3

In an aeroelastic calculation the aerodynamic loads induced by blade vibration

appear as generalized forces,

Qjk = IJ" Apk 8j dA (50)

where 8j is the normal displacement amplitude for the jth mode and Apk is the amplitude

of the pressure difference across the blade resulting from motion in the k th mode. The

vibration is assumed to be simple harmonic with frequency co.

Generalized force results will be presented here for the SR3CX2, a swept, flexible,

advanced turboprop blade designed for flutter testing. In-vacuum vibration mode shapes

(including the effects of centrifugal stiffening) were obtained from MSC NASTRAN for

6100 RPM rotational speed with [33/4 = 60.7°- These results were provided to the author

by NASA Lewis Research Center.

The normal displacements in mode one are shown in Fig. (13). The generalized

force Qll is shown in Fig. (14) as a function of frequency.
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Appendix I

Velocity Induced by a Moving Point Force

Consider a uniform unbounded stationary fluid with density Po and sound speed ao.

We imagine that this fluid is disturbed by the action of a point force moving along some

prescribed path. The resulting pressure disturbance, p', and velocity, u_ are presumed to

obey the linear acoustic equations of continuity and momentum conservation:

ap' + P°a° 2 V._'= 0
o3t

(I.l)

Po _ + Vp = F(t) 8_-_o (t)) (1.2)

where -F is the force exerted on the fluid and To is its point of application.

The solution of these equations for p' has been given by Lowson [11]. In this

application, though, we need the velocity. To get it we introduce a "displacement

potential," W (such that V W is the particle displacement):

--, a VW+-_8 (I.3)
u=-_-

O32_ (1.4)
P'=-Po at 2 ,

---)

where us is an impulsive velocity concentrated on the trajectory. Substituting these

definitions into the momentum equation, Eq(I.2) yields an expression for u-_.

at Po
_(t) 8(-_--_o (t)) (I.5)

while, from the continuity relation (I.1) we get:

o3 [V2_ 1 O32_
-_- a-o2 a--_- ] = V-_s

(I.6)

Integrating (I.5 and 1.6) over time yields:

oo

ua = -- _ _(t,) 8(-_-_o(h))H(t-t])dtl
_O --oo

(1.7)

V2 V _ ao21 o32_at2 _ pol V. -_'S_(tl)8_--_o(h ))(t-tl )H(t-h )dtl (I.8)
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whereH is a Heavisidestepfunction•
-.-¢,

Note that u8 vanishes everywhere except on the trajectory of the point force.

The solution of (I.8) for the displacement potential can be obtained from the point

source solution to the wave equation:

f(t-t 1-R 1/ao )

(V 2 ao21 0t20 ) { 47tR1 } = -8(-_--_o (h))f(t-h ) (I.9)

-.-¢ --_

where Ri = Ix-xo(tl )1 and f(t) is an arbitrary function• From this it is apparent that _t is

given by:

1 f _ (t-h-Rl/ao)H(t-tl-R1/ao)
_=- _ V. j F(h) dtl (I.10)

4Xpo _.o R1

After performing the divergence operation we get,

1 _' FI.R1

V- 4rtpo __ R_
(t-h)H(t-h-R1/ao )dh (I.11)

The step function in the integrand means that we need integrate only over that part of the

trajectory which is acoustically accessible to the field point• We may remove the step

function by introducing the retarded time x, which is the time at which a sound wave

must be emitted from the source in order to arrive at the field point x at time t. For fixed

field point position and time, the retarded time must be determined by finding the roots of

the transcendental equation,

t = x + R('t)/ao. (I. 12)

Differentiating this relation with respect to "t yields

Uo R
dt 1 -- 1-MR (I.13)
d't ao R

_o(X) is the velocity and MR is the Mach number in the direction of thewhere Uo =

observer. Clearly if the force moves subsonically then there can be only one 't for each t

(since MR is then everywhere less than one). If the source Mach number is greater than

one, though, there may be several retarded times (or none) which satisfy Eq(I. 12).

In general, let 'h, 't2, x3 ... etc. be the ordered roots of (I•12). Let us further

assume that MR < 1 at xl. Then we must have MR > 1 at 't2, MR < 1 at Z3 etc., since the

dt =0) must occur in between roots. It follows that for any
extrema (MR = 1 or

function fit):
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ee _1 _3 "_5

f f(tl)H(t-tl-Rl/ao)dtl = f f(tl)dtl + ff(tl)dtl + If(tl)dt! +

_1 '_2 "_3

: f f(tl )dtl - I f(tl)dtl + I f(tlldtl ....

1-M R x

= _ 1l--:_s I _S_f(t:)dtl
(I.14)

where M R is evaluated at the root x and the summation is over all possible roots.

The result (I. 11) for the displacement potential can thus be expressed as:

1 1-MR _ F1 "R1

V- 4_9o _ I1-MR I .-**f(t-t') R'----_i dt,.
(I.15)

To get the particle displacement we need the result (from (I. 12)) that

V_--
N

ao(1-M R)
(1.16)

N=R/R

where N is a unit vector directed from the source at Xo(X) to the observer.

It follows directly that the velocity is

-_= o_ [ 1 1-MR _(_:)1
_- 4npo _ I1-MRI

(I.17)

where

--' N(F'N) --t-h --, --, --, --,

G(x)=- ao2R(I_MR) +L _ [F1-3Nl(Fl"N1)]dh
(I.18)

Note that G (and therefore _ is infinite on the trajectory (since R1 = 0 on the path

of integration), and, in the supersonic case, on the Mach cone M R = 1.

Equations (I. 17-18) give the fluid velocity induced by a varying point force moving

along an arbitrary path.
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Appendix II

Kernel Function for Helical Lifting Surfaces

The results of Appendix I are for an arbitrary time dependent force moving along

an arbitrary path. We now specialize to the case of helical motion and a harmonically

fluctuating force. The path of the force, is, then,

D

xo(t) = _o-Ut, 0o(t) = 0o-_t, ro = const.. (i1.1)

The force, F is perpendicular to the helical surface at To, so if Ap(ro, 0o) is the amplitude

of the pressure difference across the surface, then

F(t) = fLo e i°x

where,

f - Ap(ro, 0o) rodrod0o (ii.2)

=

(L is the surface normal defined in Eq. (5).)

Now let _ = _(-_) be the normal to the helical surface at the field point x. From

Eq.'s 0.17,18) and (II.2), the induced normal velocity is

_.__ f 8 1-MR G} (11.3)
4_po 8t {x_ I1-MR[

where

_ x t-tl icot_
(LN)(LoN) eiOX + .[ e [LL-3LN-LoN]1dh (II.4)

G = a_R(1-MR) --.0

and where,

---4 --_ --..4 ---_

LN = L.N = L.R/R

---4

LoN = Lo'N (II.5)

--_ ---4

LL = Lo'L.

Explicit expressions for the geometric quantities R, LN, etc. will be given below. In Eqs.

(II.3,4) all variables subscripted "1" are evaluated at the dummy time tl; unsubscripted

variables are evaluated at the retarded time x.
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Given(II.1), timecanclearlybereplacedby theforce'sposition. Thuslet,

Y1- 0--0o(tl)

y ---0--0o(x)

m

fit = 0--0.

With these substitutions (tl by Y1, x by y, and t by 0), Eq. (II.4) becomes

G=_-y

G(Y) M 2 LN Lo N .-= -- el°/
^

R(1-MR)

+ "ti (A0-yt),,3 eiffa_t_[LL-3LN'LoN]ldy1
-** R 1

co= o/fi

I_ =_flR/U

A0 = O - Oo ,

Note that the retarded time relation becomes a retarded angle equation,

(II.6)

(H.7)

(ii.8)

A0 = 3,+ MxI_ (II.9)

Substituting Eq (II.7) into Eq. (II.3) we get

47(_._ei_o = nf i_ §° 0 ,_ I-MR _(,y)}e O"-_"{ [I-MR [

(II.10)

Because the right hand side of this expression depends on time only through

O____).
0= 0 + fit, the time derivative can be replaced by an angle derivative (--_-= fi 00

Thus (reintroducing the pressure difference Ap) we obtain:

-') i fi2Ap ei_o 04_'L)e _§ -- K(0--0o, ro, r)d0o rodro (II.11)

where
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1-MR --

K=Z I1-MRI G.
(II.12)

Multiple Blades

This gives the normal velocity induced by a single point force on one blade. If

there are multiple (NB) blades, let them be counted j = 1 ..... NB counterclockwise, so

that

(Oo)j = (0o)1 + (j-1)AOB, A0B = 2x/NB, (II.13)

are the angular positions of all blade points at the same ro, _o. Suppose, further, that the

loads are periodic from blade to blade,

(Ap)j = (Ap)I e im0-1)a°R (1I. 14)

Then the net velocity induced by all NB points is given by Eq. (II.11) if K is

replaced therein by

NB -

K(0-_ol, ro, r)= ]_ ei(t°+m)h0B(j-l)K(0--0oj, ro, r) (II.15)
j=l

Geometric Relations

For the sake of completeness we list here various purely geometric and kinematic

relations.

u (_+Ac)Ax = X-Xo(X)= _-

where Ao = _ - Go •

(II.16)

I_ = f2R/U

where R 2 = (Ax) 2 + r2 + ro2 - 2fro cos y

(II.17)

LN = L'N (II. 18)
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r O ^

= [7+ Ao - -- (sin y- a cos y) - a]/R
r

LoN = Lo'N

= [y+ AO - r (ao cos y+ sin y) + ao]_
ro

=l+m
U 2

_,_2 IT°

LL = Lo'L

[(l+ot0to) cos y+ (ot-oto) sin y]

t
a = ro'(r), C_o= ro o (ro)

MR = Mo'N

= - Mx [y + Ao + --
_,-_2IT°

U 2
sin y]/R

(II.20)

(II.21)

01.22)

(II.23)

Summary

The collective kernel function for N a blades with interblade phase index m is

given by Eq. (II.15). The single blade kernel is obtained from Eq. (II.12) and (II.8).
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Appendix IH

Numerical Evaluation of the Kernel Function

The kernel function K, defined by Eqs. (II.8), 12, 15, must be evaluated for

specified radii (r, ro) over a range of angular separations A0max > A0 > A0min. (The

range is determined by the blade planform at radii r and ro). In the procedure described

here the function K(A0) (for fixed r and ro) is defined numerically by constructing a table

Kj, AOj, J = 1, NK, which spans the required domain of A0. Values of K for specific

combinations of control and load point can then be found by interpolation.

In the first step, the function G(y), defined by Eq. (II.8), is split into:

where

is the algebraic part of G, and:

G = Go(?) + AO(Bo (?) - Bo(-Oo)) - B1 (T) (III.1)

Y ^3
Bo(y)= J" b(?i)/Rldyl (III.3)

_nax

^3
Bl(y)= _" ylb(yi)/Rldyl (III.4)

_ax

b(?) = ei_[LL-3(LN)(LoN)]. (III.5)

Note that _nax is an arbitrary constant and that the additive constant B_ (-oo)has been

deleted from Eq. (lII.l) (which is allowed by the fact that only changes in G are

physically significant).

For the reference blade the computation is begun by choosing ymax such that the

corresponding A§ (given by Eq. (II.9)) is just larger than the largest required value,

A0max. The calculation is then marched backward in constant increments AT from "_,max.

At each step the corresponding value of A0 and a provisional value of G (without the

Bo(--oo) term) are computed and saved in arrays. In addition the current value of Bo is

retained (so that Bo(--oo) may eventually be found.) This procedure is terminated when

A0 becomes less than the minimum required value.

At this point the Bo integration is continued (generally with a larger A_,) until the

sending point is a prescribed axial distance downstream ( eg five tip radii.) The final
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value of Bo is takenasBo(--*o)and the correctionterm A§Bo(--oo)is subtractedfrom

eachelementof the CJ vector. The vectors A0 and CJ then contain, in tabular form, the

information needed to define the influence of any point at radius ro on any point at r for a

given blade.

If ro is subsonic then G is identical to the single blade kernel K (cf Eq. (II.12)).

However, if ro is supersonic then A0 is a non-monotonic function of Y (with extrema at

MR = 1) and the tables A0 and CJ must be interpolated onto new arrays giving K at an

ordered sequence of A0.

Having found K for the reference blade, the entire procedure is then repeated for

each subsequent blade. However, the elements of the A0 vector are not the same as those

for the reference blade. Hence for all subsequent blades the tables K, A0 must be

interpolated onto the table for the reference blade.

After the calculation has been completed for all blades, one has NR+I vectors: A0

and K for each blade. The kernel functions are then added with appropriate phasing to

form the collective kernel, according to Eq. (II. 15).

Numerical Integration Method

In this section the numerical method used to evaluate the integrals Bo and B1,

defined in Eqs. (1II.3-II1.5), are described.

Note that the integrands contain only algebraic and trigonometric functions of the

dummy variable T1. By integrating in equal increments, A T, the required trigonometric

functions can be generated recursively at each step (with some gain in computational

efficiency).

A simple quadrature, like Simpson's rule, cannot be used, however, because the
^3

denominator, R1, may assume very small values over part of the integration range (when

the control point is close to the loaded line). In order to circumvent this difficulty we use

the rule:

_'2 u(y) dy= 2Ay u2 ul
I _ (R,+R2)2-c (-_-2 + --)y_ R 1

(III.6)

which is exact if the numerator, u(y), is linear and R2(y) is quadratic,

R2(T) = a + be + cE 2, E = ('Y--'_I)/AT (III.7)

between the limits of integration. Note that the constant and linear coefficients, a and b,

are not needed in Eq.(lII.7), but the quadratic coefficient, c, is. An expression for c will

be worked out below.
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,,2
Since R is not quadratic, but involves a cosine of the retarded angle, the constant

c must be determined by a curve fit. For this purpose we introduce the quadratic

interpolation,

cos T= (1-c 2) cos T1 + E2cos _2 + B C(1-C)

C = (y--'fi)/AT, in 10, 1]

(III.8)

B = -A_ 1 + (AT)2/I 2] sin "tl •

(The maximum error over the interval involved in this expression is (AT) 3 sin 2'1/72fl-3.)
^2

The exact expression for R is (cf Eqs. (II.12,13))

^2
R = (T+Ao) 2 + Do - Dl cos _' 0II.9)

where Do, D1 and Ao depend only on radius.

Inserting Eq. (IIl.8) into (III.9) yields the constant c required in Eq. (IlI.6):

(A]t) 2 ,)
c = (AT) 2 - D1 [cos )'2 - cos )'1 + AT(1 + ----_. sin _'1] (III.10)

Note that c is small and so has an effect on the integral only if RI and R2 are

themselves small.

Formulas III.6 and IlI.10, together with a recursive evaluation of sin and cos,

constitute the algorithm for computing Bo and B1.
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Appendix IV

Efficiency Calculation

The steady state efficiency of a propeller is the ratio of the work done in forward

motion to that done in rotation,

UT
rl - (IV.l)

UT+PL

where PL is the power loss from induced and viscous drag ( (UT+PL)/f_ is the shaft

torque). Neglecting viscous losses, PL is the rate of work done by the pressure forces

acting over the blade,

PL -fj" _= pn'udA. (IV.2)

Note that PL is quadratic in the disturbances while UT is linear (so 1"1will generally

be close to unity). In linear aerodynamic theory the errors in thrust (resulting from the

linearization) are quadratic and therefore comparable to PL- The efficiency can be

computed using linear theory only because T1 depends on the ratio PL/UT, which is

linear.

In linear theory the blade is represented by a helical sheet on which there is a load

Ap and a prescribed normal velocity. Part of the power loss, then, comes from the

distributed loads on the sheet,

PLS = -J'j" Ap _._r dr d0 (IV.3)

where L is the normal to the helical surface. This part can be computed quite simply

once the load distribution has been found.

In addition to the distributed loads on the surface, however, there are concentrated

forces acting at the leading edge, caused by the locally infinite velocities and pressures.

These forces are quadratic in the disturbances levels and so contribute negligibly to the

overall forces on the blade. However they act generally in the direction of motion (rather

than at the right angles at it, like the surface forces) and so produce a contribution to the

power which is comparable to PLS.
--_ --9

Let U be the blade velocity and dF L an incremental leading edge force. The net

power loss generated, then, is

PLL =- I O'd_L ' 0v.4)
LE

Our object here is to relate this quantity to the computed load distribution, Ap, and the
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leading edge geometry.

Let sL(r) be the arclength along, and _L(r) the unit vector normal to the leading

edge at radius r (we take _L to be on the helical surface and directed away from the

blade). From a momentum balance in the locally two dimensional flow in the plane

perpendicular to the leading edge, we find that the force on an increment of length dSL is:

dEE = _Pl3L K 2 _L dsL (IV.5)

where

[ (--4..., ,_ 1/2_L = l- U'nL/ao)'] (IV.6)

is the normal Prandtl-Glauert parameter. The factor Kv measures the strength of the

leading edge velocity singularity. Let la be the distance from the leading edge measured

inboard along the local normal n-_L. Then, if UL(_t) is the velocity in the normal direction,

Kv = lira (UL'_-la) • (IV.7)
I.t--m

Note that the force dF L is in the direction of motion so that PLL is negative (i.e. the

leading edge forces act like a power source).

The above expression for the leading edge force is a simple restatement of Eqs.

(9.15) and (9.16) in Ref.[12]. To be useful, though, the coefficient K,, must be calculated

from Ap.
._.)

Let _ be the distance measured inboard from the leading edge in the U direction

and let A be the angle between n-*Land U (i.e. A is the leading edge sweep angle).

Referring to Fig. (1) we see that I.t = _ cos A.

Define a pressure coefficient singularity strength Kp by

Kp = lim [-'X]-_ Ap ]. (IV.8)
_-_ Pl_I 2

From Bernoulli's equation, then, the velocity potential behaves like

IWl Kp (IV.9)

Therefore, from Eqs. (IV.8) and (IV.9),

K,,=lim "_'-bt 0¢_ - 1 [_[Kp/"f'cosA. (IV.10)
01a 2

----) ....) ---+
Finally, since U'nL = [ U I cos A, we obtain the incremental power in the form, (from Eq.

(IV.5) and (IV. 10))
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U'dFL = _- O_LIUI 3 K2p dSL. (IV.I I)

This expression is convenient when (as here) the load Ap is computed in strips running

parallel to U.

Finally we give some useful geometric results for the propeller. Recall that the

helical surface is on _ = U/E_ (0 + o(r)). Let 0L and X'L be the leading edge coordinates.

Define

d0L
"[L = r _ (IV. 12)

dr

Sr = l) r/U.

Then

dSL

dr

-[1 + (VL+CZ)2/S2 + 7_1m (IV. 13)

defines distance along the leading edge, and

_--]U] (O'==OL) (IV.14)
f_

defines distance inboard from the leading edge (recall that ot = rdo/dr, as previously

defined).

The component of velocity normal to the leading edge is given by

(U'nL) = (I U I2 + ot2U2)( )-2 (IV.15)

(which can most readily be shown by first evaluating the component along the edge).

Finally we give the two power losses in terms of the nondimensional load,
---4 ...._

P=S2Ap/pU 2 and nondimensional normal velocity W=4nL.uTU, which are the

variables used in the lifting surface integral equation.

PLS 1

- !I PWd_rd7p_2rt4U 4_S 4
(IV.16)

1 dS L

PLL _ X ! _L C {ITp_2rt4 U 4S 7 T
(IV.17)

where

38



C = lim [(0--0L)P2]

[32L= 1-- Mx2(1+Or2 + t-aS2)/(d_-_L)2 . (IV.18)

Thetotal inviscidpowerlossis PL= PLL + PLS.

In order to implement this scheme for computing efficiency the leading edge

singularity strength C must be extracted from the numerical data. Let P1 be the value of

P on the leading edge panel, which has a length AO 1. The associated force is P1A01- The

same net force is produced by the variable load

1
P = _ P1 [ (ARt)/(0---0 L) ].5 , (IV.19)

which implies a leading edge strength

1 p2A_l . (IV.20)C=- a-

Note that this is equivalent to saying that the load P1 is the load at the 1/4 chord of the

first panel. (The same argument would assign the inboard loads to points close to the

midchord of each panel.) The accuracy of this numerical method for computing the

leading edge singularity strength is discussed in Appendix V. It is shown there that

although the panel scheme converges almost everywhere, the leading edge strength has a

residual error of about 10% in the limit of increasing panel density. It has been found that

increasing C by a factor 1.1 significantly improves the prediction of leading edge suction,

and therefore of induced drag.

In summary, the efficiency is computed from Eqs. (IV.l, 12, 13, 16, 17, 18 and 20).
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Appendix V

2-D Airfoil Test Case

The constant load panel method was tested on the simple case of a 2-D thin airfoil

in steady incompressible flow, for which an exact solution is well known. This test sheds

some light on the selection of control point position and the identification of the leading

edge singularity strength (which is required to calculate propeller efficiency.)

The vertical velocity v(x) induced by a unit length vortex sheet of strength y(x) is

) Y(_) d_ (V.1)
1

v(x)= o

If, for example, we require that v(x) = 1 for x in (0,1) then the solution which obeys the

Kutta condition HI) = 0 is,

gx) = [(l-x) / xl "5 (V.2)

so that the total circulation and leading edge singularity strength are,

1

 v3>
O

C = "_"x _x)Ix--0 = 1 (V.4)

We will examine the ability of the constant strength panel method to predict this

solution. Using N equal length panels and a control point located a fraction e back from

the leading edge of each panel, the corresponding discrete problem is

l_yNj In[ k-j+e i=l; k=l,N (V.5)
n )=-1 k-j+e- 1

 v.6>
FN = N" j=l

For the leading edge singularity we examine two approximations,

CIy = _1/2NI-'N (V.7)

C N = [_1 1 (,_l1 + T_)]/._"N. (V.S)
4-8

The first of these (which is the direct analogue of Eq. (IV.20)) is obtained from equating

the first panel circulation, T1NAx, to the circulation for the distribution C/4-x. Eq. (V.8)

4O



is obtainedby the samematchingfor the first two panelswith an assumeddistribution

C/('_x) (l+bx).

We first examinetheconvergenceof the schemewith respectto netcirculation F

(globalconvergence),andthechoiceof control point.
Note,first, thatthesolutionfor N = 1is, trivially,

F1= y] = n /In Ie./(e-1) I (V.9)

This is singular at E = 1/2 and antisymmetric in reflection e_l-e. In fact the same thing

is true for any value of N - so that the numerical method cannot converge to the desired

solution for all E.

Note, secondly, that F 1 = _2 if e = 1/(1 + e -2) = .88 or 1.16. The region around

.88 is examined in detail in Fig. (V.1), which shows the percentage error 21-'N/re-1 for a

range of N and e. The error evidently decreases to 0 as N increases for all values of e

shown, indicating that the scheme in fact does converge to the desired solution.

1 1

It appears that the scheme will converge (to Eq. (V.2)) for any e > _. For e < _-,

it must converge to the image solution with Kutta condition at the leading edge. (As

1

noted before the solution is always singular at e = _.)

Again referring to Fig. V.1, it is apparent that for each N there is a point of zero

error, which drops from e = .88 when N = 1 to around .845 when N is large. The choice

e = .85, which was (by a similar study) found to be optimal in the propeller problem, is

also optimal here, producing no more than 0.1% errors in 1-"if N _>8.

While the scheme converges globally (whenever E > .5), it does not appear to

converge locally at the leading edge (where the limit solution is infinite.) This is

illustrated in Fig. V.2, which shows predictions of C from Eqs. (V.7,8) for e = .85 and

.82. The various curves shown do not approach the correct value (1) at large N, or even a

common value. Furthermore, the "second order" fit, Eq. (V.8), is not noticeably more

accurate than Eq. (V.7).

Despite the lack of convergence, the results (for C 2) are within 10% of the correct

value. This kind of error in leading edge singularity strength implies acceptable accuracy

in the prediction of propeller efficiency.
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Appendix VI

Aeroelastic Analysis

Although the aeroelastic analysis of the rotor is not strictly the topic of this report,

the code in which the method under discussion is implemented contains options for doing

both forced response and stability calculations. Therefore the methods used will be

described here. The reader who wishes to supply his own aeroelastic analysis and only

use the aerodynamic solutions can easily do so.

We assume that the blade deformation is described by a generalized coordinate

vector q,of length Nmode, with corresponding mass, damping and stiffness matrices M,C

and K respectively. The equations of motion of the blade are

M _ + C/I + K q = F(t) (VI. 1)

where the i'th generalized force Fi is the virtual work done by the aerodynamic load Ap

against a unit amplitude deformation in the i'th mode,

F i (t) = _f _iiApdA (VI.2)

we can take the force to consist of motion independent and motionIn general

dependent parts,

t

F = FO + J" A(t-'t)dl(X) d1: (VI.3)

where F0 is the motion independent force and A is the generalized derivative of the

force with respect to the modal coordinates ( or ,equivalently, the force induced by a unit

step in a modal displacement.) Although we cannot easily determine the detailed form of

A from the present method, it is important that it depends only on the time lag t-'t rather

than on t and 't separately.

Forced Response

In the forced response case we take F0 to be simple harmonic with some prescribed

frequency to and interblade phase index m. The solution of Eq. (VI.I) will then have the

same structure, so that,

F0 = Re(F0 eic°t) (VI.4)

q = Re_e i_) (VI.5)

where the complex amplitudes are related by,
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_=[-M03 2 +i03C+ K-QI-IFo (VI.6)

ThequantityQ is thematrix of frequencydomaingeneralizedforcesthatis computedfor

thegiven frequencyandphaseof theforcing term. Notethat, from Eq.(VI.3), thematrix

Q is simply i03timesthe Laplacetransform(with s= i 03)of the generalizedderivative
matrix A.

Stability

In the stability analysis, we take F0 = 0, and consider the temporal response to

initial conditions q = ft = 0 ,for t < 0 ; q = 0 ,t t = v0 for t = 0+. This initial value problem

can be solved formally by Laplace transforms (which we denote by L[I ), since the

aerodynamic forces are in the form of a convolution. The resulting solution for

_(s) = L[q(t)], at a fixed interblade phase angle, is

(s) = [ M s2 + C s + K - Q(s) ]-1 M v0 (VI.7)

where Q(s)= s L[A]. The Laplace integral definition of Q is convergent everywhere in

Re(s) > 0, but not in Re(s)< 0. In order for residue theory to be useful in finding the

inverse transform of q (ie. q(t)), we must define Q(s) in Re(s)< 0 as the analytic

continuation from the right half s plane. If this step is made, then stability can be

determined simply by finding that root Sc of the determinate,

D(s) = det [ M s 2 + C s + K - Q(s) ] = 0 (VI.8)

which has the largest real part. If Re(sc) > 0 the rotor is unstable. If Re(so) < 0 then the

rotor is stable for the given phase angle. In general, each interblade phase angle must be

examined independently to find the most unstable collective mode.

The procedure used to do the analytic continuation of Q(s) involves simple

interpolation on the imaginary axis. The generalized forces are computed at No user

chosen frequencies o.,'k, k = 1, No (which typically are near one or more invacuum

natural frequencies.) Within this frequency band Q(s) is defined by an interpolant,

Q(s) -- E i [ai Gi(s) ] (VI.9)

where the Gi are analytic shape functions, and the a i are coefficients determined from the

interpolation conditions at the knots Sk = i O_

Ei [ai G(Sk)_ ] = Q(Sk) (VI.10)

Although many different shape functions could be used, the ones chosen here are,
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Gi = [l,s,s2..... s/(s+_i-3)] (VI.11)

where _i-3 are real positive numbers selected to scale with the chosen frequencies.

These functions have the property that the roots of Eq(VI.8) can be found by any

standard complex eigensolver on an extended state space of dimension

N s = Nmode max(2,No-I ) consisting of the original states q,/t plus ( if No > 3 ) extra

'aerodynamic states' Gk q ; k = 4 ..... No.

The eigenvalues so determined will be Ns in number, and nonconjugate. Only

those roots that fall within the circle of diameter 03N,, - 031 centered at i [ON,, + 03t ] / 2

are admitted. How many are found, of course, depends on how broad the original

frequency band is. A simple strategy is to partition the range of invacuum natural

frequencies included in the model, sweeping through the set successively with No = 3.

This does not increase the size of the state space for any one band, and usually leads to

Nmode acceptable roots. If this procedure is used repetitively to find a critical ( or flutter)

point, the frequency and interblade phase angle bands that need to be investigated can be

narrowed very quickly as more is learned about the system.
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Table i.

PURDUE MODEL BLADE GEOMETRY

A8 b/r t CLD

.275 0.396 .333 0.

.3475 0.309 .333 0.

.4200 0.241 .333 0.

.4925 0.180 .333 0.

.5650 0.122 .333 0.

.6375 0.075 .333 0.

.7100 0.014 .333 0.

.7825 -0.034 .333 0.

.8550 -0.086 .333 O.

1.0 -0.163 .333 0.
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r

.25

.35

.45

.55

.65

.75

.85

.95

1.0

Table 2

NACA 109622 GEOMETRY

AB(rad) b/r t %

0.445 .24 0.

0.315 .24 O.

0.227 .24 O.

0.140 .24 O.

0.061 .24 O.

0 .24 O.

-0.052 .24 O.

-0.104 .24 O.

-0.131 .24 O.
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Table 3

SR2GEOMETRY

_8(rad) b/r t C_

.3 .262 .3 -.036

.4 .215 .3 .091

.5 .150 .298 .150

.6 .087 .296 .173

.7 .024 .292 .145

•8 -.028 .284 .091

.9 -.079 .258 .041

•95 -.096 .226 .018

1.0 -.122 .102 .009
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